1. Summary

- We hypothesize that certain speaker gestures can convey significant information that are correlated to audience engagement.
- Gesture attributes: velocity, direction and extremal pose.
- Measured correlation between gesture attributes and engagement: statistically significant correlations found, with Spearman correlation as high as 0.283 with \(p < 0.5 \), Bonferroni corrected.

2. Experiment: Visual Stimuli and Subjects

- Visual stimuli: Subjects shown 61 minutes of video clips in an RF-shielded room wearing 64-electrode EEG scalp cap.
 - 47 minutes of EEG recordings retained after discarding noisy data.
 - Clips created from U.S. Presidential debates semi-automatically:
 - Each clip featured a single speaker (Obama or Romney).
 - 28 clips selected and verified versions created.
 - Silent and audible versions combined into 6 longer videos each approximately 10 minutes long.

- Subjects: balanced by age, gender, political affiliation.
 - 5 of each of (male, female) X (Democrat, Republican).
 - Subjects surveyed for but not selected by topic interest.
 - Democrats and Republicans have similar levels of interest in topics
 - Males more indifferent than females.

3. Gesture Attributes

- 1. Velocity: How far each hand moves between frames (pixels).
- 2. Direction change: PCA on orientation of motion vectors between window of frames.
 - Angular distance between main components across frames.
 - E.g., “jitter”: high direction change, low velocity, or “swipe”: low direction change, high velocity.
- 3. Extremal pose: Track hand positions across full debate videos (stratify by speaker and debate)
 - Train GMMs to model position of hands
 - Number of centers set to number of hands
 - Identifies when hands tend to be in unusual positions

4. Audience Engagement from EEG

- Identifies time segments of maximum correlation between subjects’ neural activity [Dmochowski, et al. 2012]
- Let \(X_i \in \mathbb{R}^{N \times D} \) be the EEG data of subject \(i \) where \(D \) is the number of channels and \(T \) is the number of time samples
- For \(N \) subjects, form aggregated matrices:
 \[
 X_1 = \begin{bmatrix}
 X^{1}(1) & \cdots & X^{1}(N) & \cdots & X^{1}(N-2) & \cdots & X^{1}(N-3) & \cdots & X^{1}(N-1) \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 X^{N}(1) & \cdots & X^{N}(N) & \cdots & X^{N}(N-2) & \cdots & X^{N}(N-3) & \cdots & X^{N}(N-1) \\
 \end{bmatrix} \\
 X_2 = \begin{bmatrix}
 X^{1}(1) & \cdots & X^{1}(N) & \cdots & X^{1}(N-2) & \cdots & X^{1}(N-3) & \cdots & X^{1}(N-1) \\
 \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 X^{N}(1) & \cdots & X^{N}(N) & \cdots & X^{N}(N-2) & \cdots & X^{N}(N-3) & \cdots & X^{N}(N-1) \\
 \end{bmatrix}
 \]

- We wish to find weight vector \(w \in \mathbb{R}^{N} \) such that Pearson correlation between \(Y_i = X_i w \) and \(Y_i = X_i w \) is maximized.
- Compute Pearson correlation between 5-second overlapping windows (at 1-second intervals) for weight vector
- Correlations computed from three weight vectors corresponding to strongest correlations referred to as components 1, 2, 3

5. Correlations

- Computed correlations between 3 gesture attributes (12 Hz) and 30 engagement features (1 Hz upscaled to 12 Hz).
- (5 subject groups) \(X \) (silent/audible) \(X \) (3 EEG components)
- Spearman correlation \(\rho \) used instead of Pearson.
- No reason extreme engagement should correlate with extreme gesture.
- Statistically significant correlations for all subjects shown.
- Permutation test; Bonferroni corrected.
- More subject stratifications in paper.

6. Observations

- Gestures are significant and may augment speech.
- Statistically significant correlations between gesture and engagement exist during both silent and audible playback.
- Extremal poses and direction change are the most significant gesture attributes.
- First and second components of engagement features drive correlation.
- Audible videos are more engaging in general, but silent videos are more likely to engage via gesture.
- Obama did not engage audience through gesture in first debate, whereas Romney did so in both debates.
- Consistent with media reports that Obama “lost” the first debate.

John R. Zhang1, Jason Sherwin1, Jacek Dmochowski2, Paul Sajda1 and John R. Kender1
1Columbia University, New York NY 2Stanford University, Stanford CA